skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Christodoulides, Demetrios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Optical forces are known to arise in a universal fashion in many and diverse physical settings. As such, they are successfully employed over a wide range of applications in areas like biophotonics, optomechanics and integrated optics. While inter-elemental optical forces in few-mode photonic networks have been so far systematically analyzed, little is known, if any, as to how they manifest themselves in highly multimoded optical environments. In this work, by means of statistical mechanics, we formally address this open problem in optically thermalized weakly nonlinear heavily multimode tight-binding networks. The outlined thermodynamic formulation allows one to obtain in an elegant manner analytical results for the exerted thermodynamic pressures in utterly complex arrangements-results that are either computationally intensive or impossible to obtain otherwise. Thus, we derive simple closed-form expressions for the thermodynamic optical pressures displayed among elements, which depend only on the internal energy as well as the coupling coefficients involved. In all cases, our theoretical results are in excellent agreement with numerical computations. Our study may pave the way towards a deeper understanding of these complex processes and could open up avenues in harnessing radiation forces in multimode optomechanical systems. 
    more » « less
  2. We study the coherence characteristics of light propagating in nonlinear graded-index (GRIN) multimode fibers after attaining optical thermal equilibrium conditions. The role of optical temperature on the spatial mutual coherence function and the associated correlation area is systematically investigated. In this respect, we show that the coherence properties of the field at the output of a multimode nonlinear fiber can be controlled through its optical thermodynamic properties. 
    more » « less
  3. Abstract Recent experimental studies in heavily multimoded nonlinear optical systems have demonstrated that the optical power evolves towards a Rayleigh–Jeans (RJ) equilibrium state. To interpret these results, the notion of wave turbulence founded on four-wave mixing models has been invoked. Quite recently, a different paradigm for dealing with this class of problems has emerged based on thermodynamic principles. In this formalism, the RJ distribution arises solely because of ergodicity. This suggests that the RJ distribution has a more general origin than was earlier thought. Here, we verify this universality hypothesis by investigating various nonlinear light-matter coupling effects in physically accessible multimode platforms. In all cases, we find that the system evolves towards a RJ equilibrium—even when the wave-mixing paradigm completely fails. These observations, not only support a thermodynamic/probabilistic interpretation of these results, but also provide the foundations to expand this thermodynamic formalism along other major disciplines in physics. 
    more » « less
  4. We develop a general methodology capable of analyzing the response of Weyl semimetal (WSM) photogalvanic networks. Both single-port and multiport configurations are investigated via extended versions of Norton’s theorem. An equivalent circuit model is provided where the photogalvanic currents induced in these gapless topological materials can be treated as polarization-dependent sources. To illustrate our approach, we carry out transport simulations in arbitrarily shaped configurations involving pertinent WSMs. Our analysis indicates that the photogalvanic currents collected in a multi-electrode system directly depend on the geometry of the structure as well as on the excitation and polarization pattern of the incident light. Our results could be helpful in designing novel optoelectronic systems that make use of the intriguing features associated with WSMs. 
    more » « less